AddBias#

class penzai.deprecated.v1.nn.linear_and_affine.AddBias[source]#

Bases: Layer

Shifts an input by a learnable offset (a bias).

This layer uses named arrays to automatically apply across the correct set of dimensions.

Variables:

Methods

__init__(bias, new_axis_names)

from_config(biased_axes[, new_output_axes, ...])

Constructs an AddBias layer from a configuration.

input_structure()

output_structure()

treescope_color()

__call__(value)

Adds a learned bias to the value.

Attributes

bias

new_axis_names

Inherited Methods

(expand to view inherited methods)

attributes_dict()

Constructs a dictionary with all of the fields in the class.

from_attributes(**field_values)

Directly instantiates a struct given all of its fields.

key_for_field(field_name)

Generates a JAX PyTree key for a given field name.

select()

Wraps this struct in a selection, enabling functional-style mutations.

tree_flatten()

Flattens this tree node.

tree_flatten_with_keys()

Flattens this tree node with keys.

tree_unflatten(aux_data, children)

Unflattens this tree node.

__call__(value: NamedArray) NamedArray[source]#

Adds a learned bias to the value.

classmethod from_config(biased_axes: dict[str, int], new_output_axes: dict[str, int] | None = None, initializer: BiasInitializer = <function zeros>, dtype: jax.typing.DTypeLike = <class 'jax.numpy.float32'>) AddBias[source]#

Constructs an AddBias layer from a configuration.

Parameters:
  • biased_axes – Names and lengths for the axes in the input that the bias should act over. Other axes will be broadcast over.

  • new_output_axes – Names and lengths of new axes that should be introduced into the input.

  • initializer – Function to use to initialize the weight.

  • dtype – Dtype for the bias.

Returns:

A new AddBias layer with an uninitialized bias parameter.